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Five problems

● turbulence
● chaos
● irreversibility
● stochasticity
● t = 0

serious

Kelvin‒Helmholtz instability
Pluto code (Mignone et al. 2007)

additional instabilities:
Rayleigh‒Taylor
magneto-rotational (Flock et al. 2013)
streaming (Johansen et al. 2007)

↓
an inverse problem

(except young families)

1



Observations

● orbital distribution  → families: MB, Hildas, Trojans of J & M, 
TNOs, irregular moons, ...

← usually taken @ 4.56 Gyr



Methods

● hydrodynamic (e.g. SPH by Benz & Asphaug 1999)
● N-body (Levison & Duncan 1994)
● Monte-Carlo (Morbidelli et al. 2009)

● initial conditions
● boundary conditions
● (material) parameters
● parametric relations  too complicated physics←

● (formal) uncertainties
● systematics (!)

Types of numerical
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lagrangian
vs eulerian



Swift integratorN-body



Swift integrator (cont.) as of Brož et al. (2011)



Boulder code

● Monte-Carlo approach
● number of disruptions
● parametric relations (SPH)
● largest remnant
● largest fragment
● SFD slope of fragments
● dynamical decay

pseudo-random-number generator
for rare collisions within one time step

(Morbidelli et al. 2009)

focussing

specific energy Q = ½ mjv
2/Mtot

QD ... scaling law*



A number of unknowns...

● NTP, ri, vi, rj, vj, mi, mj, τmig, Δv, Di, ρi, ρsurf, K, C, ABond, , ε cYORP, 
λi, βi, ωi, fk, gk, B, β1, β2, D0, DPB, ρPB, vimp, φimp, fimp, ωimp

● qa, qb, qc, D1, D2, nnorm, ρbulk, Q0, a, B, b, qfact, Pij, vij, tend, dN (t ), 
dN (D,t )

● 49 (!) a-priori unknown ICs and parameters
● not speaking about SPH models yet...

● beware of discretisation Δt

i ... “mass-less” particles, j ... massive bodies



Uncertainty 1: Family membership

● missing physical data → one cannot exclude all interlopers
● a broad distribution of albedo even within one family

3

Milani & Kneževic (2003)
Masiero et al. (2011)
cf. Dykhuis & Greenberg (2015)
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2: Parent-body size

● a simplified scaling (Durda et al. 2007), cf. Tanga et al. (1999)

● uncertainties: multiple fits have low χ2, interlopers
● systematics: number & distribution of SPH particles
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Eos family PB size



4: Initial velocity field

● usually, we assume isotropic, with a peak at vesc from PB
● however, Veritas is not the case (Tsiganis et al. 2007)
● uncertainties: impact geometry (fimp, ωimp)
● systematics: anisotropies (as indicated by SPH models)?

 ↓ e.g. Karin family (Nesvorný et al. 2006)

Benz & Asphaug (1994)
Richardson (2000)

D = 100 km
d = 25 km
v = 5 km/s
φ = 45°
NSPH = 104



5: Density

● distribution is not gaussian (see Carry 2012)
● low number of high-precision (20%) measurements
● possible systematics in volumes, calibration



6: Porosity

● again, a low number of 20% measurements
● calibration problems if the value for (101955) Bennu is used

Carry (2012)



7: Thermal conductivity

● trend vs step-like function? (cf. Delbó et al. 2007)
● uncertainty: a correlation of K & ρsurf

● systematics: NEATM model for spheres (not shapes)



8: Spin

● usually assumed isotropic & maxwellian rates ω 
● DAMIT database (Hanuš et al. 2013), uncertainties 10˚, 

multiple solutions in λ, systematics in λ? (Bowell et al. 2014)



9: Shape

● a correspondence to real shapes?
● YORP torques (Capek & Vokrouhlický 2004) for a set of 

gaussian random “spheres” ← random assignment
● small-scale topography is important (Statler 2009)
● stochastic YORP (Bottke et al. 2014, Cotto-Figueroa et al. 2014)

Well, only a model of...

ˇ

(624) Hektor (actually, a binary with a satellite; Marchis et al. 2014)



10: Boulders

● 3-dimensional heat diffusion (Golubov & Krugly 2012, 
Ševecek et al. submit.)  non-negligible → YORP torques

● uncertainties: SFD of boulders, thermal parameters
● systematics: real shapes

Individual

dω/dt ~ 10-7 rad day-2

for (25143) Itokawa

cf. Lowry et al. (2014)



Finite element method

● Ševecek et al. (submit.), notation Langtangen (2003):

FEM

Green lemma

discretisation, BC, linearisation

weak formulation
Galerkin method

ˇ



11: Internal structure

● monolith vs macro- vs microscopic porosity (Benz & 
Asphaug 1999, Benavidez et al. 2012, Jutzi et al. 2014)

● stochastic evolution for 6 MB parts (Cibulková et al. 2014)
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Internal structure (cont.)

● macroporous rubble piles too weak (Cibulková et al. 2014)



12: Scaling law

● uncertainties: material parameters  ← a factor of 2?
● systematics: velocity dependence (Steward & Leinhardt 

2009), impact angle scaling (Jutzi et al. 2014)

● total damage of the parent body (Michel et al. 2003) 
 → dust production?

● bouncing and friction during gravitational reaccumulation 
(Richardson et al. 2009)

● chemical reactions in gaseous phase (i.e. not a simple EOS 
of Tillotson 1962, Melosh 2000)

i.e. strength in erg/g vs radius QD
 = Q0r

a + Bρrb*



13: Migration scenario

● jumping-Jupiter (Morbidelli 
et al. 2010), fifth giant 
planet (Nesvorný 2011)

● sufficient sampling ~1 yr 
for x, y, z interpolation

● uncertainties: Mdisk

● systematics: different 
scenario, late phases, 
resonance sweeping, 
additional populations?
(E-belt, Bottke et al. 2011)

Chrenko et al. (in prep.)



14: Dynamical decay

● Minton & Malhotra (2010), a simple reconfiguration only
● uncertainties: collisional pi(t), vimp(t) for different scenarios
● systematics: an estimate of primordial population



15: Size distribution of comets

● uncertainties: Mdisk, slope(s) of the SFD for small D
● systematics: cratering on satellites, capture of Trojans, ...

transneptunian

cf. Neptune Trojans
(Sheppard & Trujillo 2010)



Application A: Individual families

● Eos (Brož & Morbidelli 2013), Euphrosyne (Carruba et al. 
2014)  → N-body models may guide family identifications

● core vs halo, distinct K-type taxonomy, gaps and scattering 
due to resonances, background often not uniform
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B: Statistics of families

● production function (Brož et al. 2013, Bottke et al. 2015)
● new families mostly DPB < 100 km or craterings



C: Ages of families

● dynamical ages span the whole interval of 4 Gyr
● but a depletion of old DPB < 100 km families



D: Late heavy bombardment

● no problems producing DPB > 200 km families (Brož et al. 2013)

● but 5 times more DPB > 100 km families  ← comminuition 
and breakups of comets at low q

of the MB



E: Ghost families?

● “pristine zone” (a = 2.825 to 2.955 AU), low background
● some families (e.g. Itha) have very shallow SFD, i.e. 

remnants of large/old/communitioned families?

So called

Parker et al. (2008)



F: New observables

● distribution of pole latitudes β 
for the whole MB ← YORP etc.

● not yet enough bodies for 
individual families, e.g. Flora 

(Hanuš et al. 2013)



Conclusions

● no strong indication that thermal parameters are offset
● no model should rely on individual family membership
● bulk density is the most important (uncertain) parameter
● account for YORP due to boulders for sub-km asteroids
● there might be “ghost” families, remnants of LHB
● essentially no constraints for breakups of comets



Future applications

● “brute force” approach  new poles for family members→
cf. http://www.projectsoft.cz/en/roboticka-observator.php

● observations of sub-km family members by surveys 
● new NEO model (Granvik et al., in prep.)  its SFD as a →

strong constraint
● SFD of Neptune Trojans  constraints for comets→
● N-body models for not-yet-studied families
● Trojan families (Rozehnal & Brož 2014), no YE da/dt drift
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Blue Eye 600 robotic observatory



Future applications (cont.)

● calibration of collisional models based on young families
 ← bias determination is crucial, of course

● both monolith & rubble-pile populations, incl. interactions
● YORP spin-up disruptions (Jacobson et al. 2014)
● combined orbital & collisional models (like LIPAD, Levison et al. 2012)

● 3-dimensional heat diffusion in boulders and meteoroids of 
various shapes, scaling with D (cf. Breiter et al. 2009)



Future applications (end)

● analyze velocity fields resulting from SPH simulations
● improve scaling of SPH models (DPB > and < 100 km)
● high-speed collisions with weak projectiles (comets)

D = 100 km
d = 30 km
v = 15 km/s
φ = 30°
NSPH = 1.56 105

Benz & Asphaug (1994)
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